Lists all cached data and metadata if available
list_cancensus_cache()
tibble with metadata on cached data
# list add the cached census data
list_cancensus_cache()
#> # A tibble: 3,359 × 11
#> path dataset regions level vectors created_at version size
#> <chr> <chr> <chr> <chr> <chr> <dttm> <chr> <dbl>
#> 1 CM_data_0008… CA16 "{\"CS… Regi… "[\"v_… 2023-06-14 15:39:12 d.4 874
#> 2 CM_data_0017… CA16 "{\"CS… Regi… "[\"v_… 2023-05-24 18:34:54 d.4 516
#> 3 CM_data_0023… CA11 "{\"CS… Regi… "[\"v_… 2023-05-16 21:46:25 d.4 485
#> 4 CM_data_0039… CA21 "{\"CS… Regi… "[\"v_… 2023-05-24 19:32:51 d.4 533
#> 5 CM_data_0054… CA21 "{\"CS… DA "[\"v_… 2023-08-28 15:19:19 d.4 620
#> 6 CM_data_0056… CA16 "{\"CS… Regi… "[\"v_… 2023-05-24 18:32:15 d.4 525
#> 7 CM_data_006c… CA21 "{\"CS… Regi… "[\"v_… 2023-05-24 18:29:31 d.4 529
#> 8 CM_data_007f… CA21 "{\"CM… Regi… "[]" 2023-01-26 07:18:01 d.4 1882
#> 9 CM_data_0084… CA16 "{\"CS… Regi… "[\"v_… 2023-06-14 15:32:37 d.4 707
#> 10 CM_data_008d… CA11 "{\"CS… Regi… "[\"v_… 2023-05-24 18:36:59 d.4 478
#> # ℹ 3,349 more rows
#> # ℹ 3 more variables: last_accessed <dttm>, access_count <dbl>,
#> # resolution <chr>